资源类型

期刊论文 98

年份

2023 8

2022 17

2021 13

2020 6

2019 6

2018 1

2017 4

2016 1

2014 3

2012 1

2011 2

2010 5

2009 5

2008 4

2007 5

2006 1

2005 2

2003 3

2001 3

2000 1

展开 ︾

关键词

三点弯曲梁 2

弯曲正应力 2

整体穿刺 2

细胞迁移 2

3D支架平台 1

BNLAS 1

FRP 聚合物 1

三维有限元 1

中间桥塔 1

乳腺癌 1

优化 1

传递函数 1

伸长断裂 1

低刚度 1

光刻机 1

内衬混凝土 1

刚性 1

初始刚度 1

剪切和弯曲的共同作用 1

展开 ︾

检索范围:

排序: 展示方式:

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 131-142 doi: 10.1007/s11709-016-0376-4

摘要: In this paper, a novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of vibrations for a cable stayed bridge model generated using ABAQUS software. Two lateral steel beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification approach. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge with duration of 30 s supporting on real data of a strong wind from the literature. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze both the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared a safer structure against vertical and torsional vibrations and rarely expected flutter wind speed. Furthermore, the coupling between the vertical and torsional mode shapes has been removed to larger natural frequencies magnitudes with a high factor of safety. The novel structural approach manifested great efficiency in increasing vertical and torsional stiffness of the structure.

关键词: aeroelastic instability     structural damping     flutter wind speed     bending stiffness     torsional stiffness    

Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces

Heng LIU, Jie HONG, Dayi ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 417-429 doi: 10.1007/s11465-019-0584-4

摘要: The transverse stiffness and vibration characteristics of discontinuous beams can significantly differ from those of continuous beams given that an abrupt change in stiffness may occur at the interface of the former. In this study, the equations for the deflection curve and vibration frequencies of a simply supported discontinuous beam under axial loads are derived analytically on the basis of boundary, continuity, and deformation compatibility conditions by using equivalent spring models. The equation for the deflection curve is solved using undetermined coefficient methods. The normal function of the transverse vibration equation is obtained by separating variables. The differential equations for the beam that consider moments of inertia, shearing effects, and gyroscopic moments are investigated using the transfer matrix method. The deflection and vibration frequencies of the discontinuous beam are studied under different axial loads and connection spring stiffness. Results show that deflection decreases and vibration frequencies increase exponentially with increasing connection spring stiffness. Moreover, both variables remain steady when connection spring stiffness reaches a considerable value. Lastly, an experimental study is conducted to investigate the vibration characteristics of a discontinuous beam with a curvic coupling, and the results exhibit a good match with the proposed model.

关键词: discontinuous beam     bending stiffness     transverse vibration     axial loads     gyroscopic moments    

Mortarless structures based on topological interlocking

Arcady V. DYSKIN, Elena PASTERNAK, Yuri ESTRIN

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 188-197 doi: 10.1007/s11709-012-0156-8

摘要: We review the principle of topological interlocking and analyze the properties of the mortarless structures whose design is based on this principle. We concentrate on structures built of osteomorphic blocks – the blocks possessing specially engineered contact surfaces allowing assembling various 2D and 3D structures. These structures are easy to build and can be made demountable. They are flexible, resistant to macroscopic fractures and tolerant to missing blocks. The blocks are kept in place without keys or connectors that are the weakest elements of the conventional interlocking structures. The overall structural integrity of these structures depends on the force imposed by peripheral constraint. The peripheral constraint can be provided in various ways: by an external frame or features of site topography, internal pre-stressed cables/tendons, or self-weight and is a necessary auxiliary element of the structure. The constraining force also determines the degree of delamination developing between the blocks due to bending and thus controls the overall flexibility of the structure thus becoming a new design parameter.

关键词: topological interlocking     fragmented structures     segmented structures     constraint     delamination     bending stiffness    

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 711-725 doi: 10.1007/s11465-021-0647-1

摘要: The safety of human–robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human–robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional–derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.

关键词: variable stiffness actuator     variable stiffness module     drive module     symmetrical structure     double-deck grooves     expandable electrical system    

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 75-85 doi: 10.1007/s11709-021-0798-5

摘要: An efficient and meshfree approach is proposed for the bending analysis of thin plates. The approach is based on the choice of a set of interior points, for each of which a basis function can be defined. Plate deflection is then approximated as the linear combination of those basis functions. Unlike traditional meshless methods, present basis functions are defined in the whole domain and satisfy the governing differential equation for plate. Therefore, no domain integration is needed, while the unknown coefficients of deflection expression could be determined through boundary conditions by using a collocation point method. Both efficiency and accuracy of the approach are shown through numerical results of plates with arbitrary shapes and boundary conditions under various loads.

关键词: plate     bending     meshless method     collocation    

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0961-2

摘要: Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases. Proper assessment is crucial in the initial design stages. This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations. Influential parameters (i.e., the excavation geometry, diaphragm wall thickness, pile geometry, strength and small-strain stiffness of the soil, and soft clay thickness) were considered and employed in the developed equations. It is practically unfeasible to obtain measurement data; hence, artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases, using the three-dimensional finite element method. The developed equations were established through a multiple linear regression analysis of the artificial data, using the transformation technique. In addition, the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect, using the plane strain ratio parameter. The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.

关键词: pile responses     excavation     prediction     deflection     bending moments    

Comparison of indices for stiffness performance evaluation

Giuseppe CARBONE, Marco CECCARELLI,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 270-278 doi: 10.1007/s11465-010-0023-z

摘要: This paper addresses the problem of a numerical evaluation of the stiffness performance for multibody robotic systems. An overview is presented with basic formulation concerning indices that are proposed in literature. New indices are also outlined. Stiffness indices are computed and compared for a case study. Results are used for comparing the effectiveness of the stiffness indices. The main goal is to propose a performance index describing synthetically the elastostatic response of a multibody robotic system and also for design purposes.

关键词: robotics     stiffness     performance indices    

New nonlinear stiffness actuator with predefined torque‒deflection profile

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0721-3

摘要: A nonlinear stiffness actuator (NSA) could achieve high torque/force resolution in low stiffness range and high bandwidth in high stiffness range, both of which are beneficial for physical interaction between a robot and the environment. Currently, most of NSAs are complex and hardly used for engineering. In this paper, oriented to engineering applications, a new simple NSA was proposed, mainly including leaf springs and especially designed cams, which could perform a predefined relationship between torque and deflection. The new NSA has a compact structure, and it is lightweight, both of which are also beneficial for its practical application. An analytical methodology that maps the predefined relationship between torque and deflection to the profile of the cam was developed. The optimal parameters of the structure were given by analyzing the weight of the NSA and the mechanic characteristic of the leaf spring. Though sliding friction force is inevitable because no rollers were used in the cam-based mechanism, the sliding displacement between the cam and the leaf spring is very small, and consumption of sliding friction force is very low. Simulations of different torque‒deflection profiles were carried out to verify the accuracy and applicability of performing predefined torque‒deflection profiles. Three kinds of prototype experiments, including verification experiment of the predefined torque‒deflection profile, torque tracking experiment, and position tracking experiment under different loads, were conducted. The results prove the accuracy of performing the predefined torque‒deflection profile, the tracking performance, and the interactive performance of the new NSA.

关键词: compliant actuator     nonlinear stiffness actuator     nonlinear spring     predefined torque−deflection profile    

growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined torsion and bending

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 905-913 doi: 10.1007/s11709-021-0683-2

摘要: In a nuclear powerplant, the rotary equipment, such as a pump directly fitted with hanger in the piping system, experiences torsional and bending loads. Higher crack growth rate occurs because of this torsional load in addition to the bending load. Hence, it is necessary to study the fatigue behavior of piping components under the influence of combined torsional and bending load. In this study, experimental fatigue life evaluation was conducted on a notched stainless steel SA312 Type 304LN straight pipe having an outer diameter of 170 mm. The experimental crack depth was measured using alternating current potential drop technique. The fatigue life of the stainless steel straight pipe was predicted using experiments, Delale and Erdogan method, and area-averaged root mean square–stress intensity factor approach at the deepest and surface points of the notch. Afterward, the fatigue crack growth and crack pattern were discussed. As a result, fatigue crack growth predicted using analytical methods are in good agreement with experimental results.

关键词: fatigue life     Delale and Erdogan method     RMS–SIF approach     stainless steel     torsion and bending load     fatigue crack growth    

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0691-5

摘要: This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments, such as unstructured or man-made operational errors through comprehensive consideration of cost, accuracy, manufacturing, and application. Based on the concept of mechanical passive compliance, which is widely implemented in robots for interactions, a finger is dedicated to improving mechanical robustness. The finger mechanism not only achieves passive compliance against physical impacts, but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators. It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness. The mechanical design of the finger and its stiffness adjusting methods are elaborated. The stiffness characteristics of the finger joint and the actuation unit are analyzed. Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model. Fingers have been experimentally proven to be robust against physical impacts. Moreover, the experimental part verifies that fingers have good power, grasping, and manipulation performance.

关键词: multifingered hand     mechanism design     robot safety     variable stiffness actuator    

Mechanical performance analysis and stiffness test of a new type of suspension bridge

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1160-1180 doi: 10.1007/s11709-021-0760-6

摘要: A new type of suspension bridge is proposed based on the gravity stiffness principle. Compared with a conventional suspension bridge, the proposed bridge adds rigid webs and cross braces. The rigid webs connect the main cable and main girder to form a truss that can improve the bending stiffness of the bridge. The cross braces connect the main cables to form a closed space truss structure that can improve the torsional stiffness of the bridge. The rigid webs and cross braces are installed after the construction of a conventional suspension bridge is completed to resist different loads with different structural forms. A new type of railway suspension bridge with a span of 340 m and a highway suspension bridge with a span of 1020 m were designed and analysed using the finite element method. The stress, deflection of the girders, unbalanced forces of the main towers, and natural frequencies were compared with those of conventional suspension bridges. A stiffness test was carried out on the new type of suspension bridge with a small span, and the results were compared with those for a conventional bridge. The results showed that the new suspension bridge had a better performance than the conventional suspension bridge.

关键词: new type of suspension bridge     stiffness test     mechanical performance     railway bridge     space truss    

Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1316-1323 doi: 10.1007/s11709-019-0555-1

摘要: The effect of delamination on the stiffness reduction of composite pipes is studied in this research. The stiffness test of filament wound composite pipes is simulated using cohesive zone method. The modeling is accomplished to study the effect of the geometrical parameters including delamination size and its position with respect to loading direction on stiffness of the composite pipes. At first, finite element results for stiffness test of a perfect pipe without delamination are validated with the experimental results according to ASTM D2412. It is seen that the finite element results agree well with experimental results. Then the finite element model is developed for composite pips with delaminated areas with different primary shapes. Thus, the effect of the size of delaminated region on longitudinal and tangential directions and also its orientation with respect to loading direction on delamination propagation and stiffness reduction of the pipes is assessed.

关键词: delamination     composite pipes     stiffness test     cohesive zone method    

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 10-24 doi: 10.1007/s11709-022-0904-3

摘要: A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.

关键词: underground structures     seismic response     stiffness matrix method     domain reduction method     P-SV waves    

Gear fault diagnosis using gear meshing stiffness identified by gearbox housing vibration signals

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0713-3

摘要: Gearbox fault diagnosis based on vibration sensing has drawn much attention for a long time. For highly integrated complicated mechanical systems, the intercoupling of structure transfer paths results in a great reduction or even change of signal characteristics during the process of original vibration transmission. Therefore, using gearbox housing vibration signal to identify gear meshing excitation signal is of great significance to eliminate the influence of structure transfer paths, but accompanied by huge scientific challenges. This paper establishes an analytical mathematical description of the whole transfer process from gear meshing excitation to housing vibration. The gear meshing stiffness (GMS) identification approach is proposed by using housing vibration signals for two stages of inversion based on the mathematical description. Specifically, the linear system equations of transfer path analysis are first inverted to identify the bearing dynamic forces. Then the dynamic differential equations are inverted to identify the GMS. Numerical simulation and experimental results demonstrate the proposed method can realize gear fault diagnosis better than the original housing vibration signal and has the potential to be generalized to other speeds and loads. Some interesting properties are discovered in the identified GMS spectra, and the results also validate the rationality of using meshing stiffness to describe the actual gear meshing process. The identified GMS has a clear physical meaning and is thus very useful for fault diagnosis of the complicated equipment.

关键词: gearbox fault diagnosis     meshing stiffness     identification     transfer path     signal processing    

Stiffness of a 3-degree of freedom translational parallel kinematic machine

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 233-241 doi: 10.1007/s11465-014-0312-z

摘要:

In this paper, a typical 3-degree of freedom (3-DOF) translational parallel kinematic machine (PKM) is studied and analyzed whose tool platform has only translations along X-Y- and Z-axes. It consists of three limbs, each of which have arm and forearm with prismatic-revolute-revolute-revolute (PRRR) joints. Inverse kinematics analysis is carried out to find the slider coordinates and joint angles for a given position of tool platform. Stiffness modeling is done based on the compliance matrices of arm and forearm of each limb. Using the stiffness modeling the variations of minimum and maximum translational stiffness in the workspace are analyzed. For various architectural parameters of the 3-DOF PKM the tendency of variations on the minimum and maximum stiffness over the entire workspace is studied; and also the deflections of the tool platform along XY, and Z directions with respect to various forces are presented.

关键词: 3-DOF translational PKM     inverse kinematics     stiffness modeling     translational stiffness    

标题 作者 时间 类型 操作

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

期刊论文

Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces

Heng LIU, Jie HONG, Dayi ZHANG

期刊论文

Mortarless structures based on topological interlocking

Arcady V. DYSKIN, Elena PASTERNAK, Yuri ESTRIN

期刊论文

Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment

期刊论文

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

期刊论文

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

期刊论文

Comparison of indices for stiffness performance evaluation

Giuseppe CARBONE, Marco CECCARELLI,

期刊论文

New nonlinear stiffness actuator with predefined torque‒deflection profile

期刊论文

growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined torsion and bending

期刊论文

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

期刊论文

Mechanical performance analysis and stiffness test of a new type of suspension bridge

期刊论文

Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse

Sattar MALEKI, Roham RAFIEE, Abolfazl HASANNIA, Mohammad Reza HABIBAGAHI

期刊论文

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

期刊论文

Gear fault diagnosis using gear meshing stiffness identified by gearbox housing vibration signals

期刊论文

Stiffness of a 3-degree of freedom translational parallel kinematic machine

null

期刊论文